Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Molecules ; 27(15)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1957395

ABSTRACT

COVID-19, caused by the coronavirus SARS-CoV-2, emerged in late December 2019 in Wuhan, China. As of 8 April 2022, the virus has caused a global pandemic, resulting in 494,587,638 infections leading to 6,170,283 deaths around the world. Although several vaccines have received emergency authorization from USA and UK drug authorities and two more in Russia and China, it is too early to comment on the prolonged effectiveness of the vaccines, their availability, and affordability for the developing countries of the world, and the daunting task to vaccinate 7 billion people of the world with two doses of the vaccine with additional booster doses. As a result, it is still worthwhile to search for drugs and several promising leads have been found, mainly through in silico studies. In this study, we have examined the binding energies of several alkaloids and anthocyanin derivatives from the Solanaceae family, a family which contains common consumable vegetables and fruit items such as eggplant, pepper, and tomatoes. Our study demonstrates that Solanaceae family alkaloids such as incanumine and solaradixine, as well as anthocyanins and anthocyanidins, have very high predicted binding energies for the 3C-like protease of SARS-CoV-2 (also known as Mpro). Since Mpro is vital for SARS-CoV-2 replication, the compounds merit potential for further antiviral research towards the objective of obtaining affordable drugs.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Solanaceae , Alkaloids/pharmacology , Anthocyanins , Antiviral Agents/chemistry , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Phytochemicals/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2 , Solanaceae/metabolism , Vegetables/metabolism , Viral Nonstructural Proteins/metabolism
2.
Plants (Basel) ; 11(11)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1875735

ABSTRACT

The secondary metabolites of endemic plants from the Rutaceae family, such as Burkillanthusmalaccensis (Ridl.) Swingle from the rainforest of Malaysia, has not been studied. Burkillanthusmalaccensis (Ridl.) Swingle may produce antibacterial and antibiotic-potentiating secondary metabolites. Hexane, chloroform, and methanol extracts of leaves, bark, wood, pericarps, and endocarps were tested against bacteria by broth microdilution assay and their antibiotic-potentiating activities. Chromatographic separations of hexane extracts of seeds were conducted to investigate effective phytochemicals and their antibacterial activities. Molecular docking studies of werneria chromene and dihydroxyacidissiminol against SARS-CoV-2 virus infection were conducted using AutoDock Vina. The methanol extract of bark inhibited the growth of Staphylococcusaureus, Escherichiacoli, and Pseudomonasaeruginosa with the minimum inhibitory concentration of 250, 500, and 250 µg/mL, respectively. The chloroform extract of endocarps potentiated the activity of imipenem against imipenem-resistant Acinetobacterbaumannii. The hexane extract of seeds increased the sensitivity of P. aeruginosa against ciprofloxacin and levofloxacin. The hexane extract of seeds and chloroform extract of endocarps were chromatographed, yielding werneria chromene and dihydroxyacidissiminol. Werneria chromene was bacteriostatic for P.aeruginosa and P.putida, with MIC/MBC values of 1000 > 1000 µg/mL. Dihydroxyacidissiminol showed the predicted binding energies of -8.1, -7.6, -7.0, and -7.5 kcal/mol with cathepsin L, nsp13 helicase, SARS-CoV-2 main protease, and SARS-CoV-2 spike protein receptor-binding domain S-RBD. Burkillanthusmalaccensis (Ridl.) Swingle can be a potential source of natural products with antibiotic-potentiating activity and that are anti-SARS-CoV-2.

3.
Molecules ; 27(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625268

ABSTRACT

The focus of this roadmap is to evaluate the possible efficacy of Artemisia herba-alba Asso. (Asteraceae) for the treatment of COVID-19 and some of its symptoms and several comorbidities using a combination of in silico (molecular docking) studies, reported ethnic uses, and pharmacological activity studies of this plant. In this exploratory study, we show that various phytochemicals from Artemisia herba-alba can be useful against COVID-19 (in silico studies) and for its associated comorbidities. COVID-19 is a new disease, so reports of any therapeutic treatments against it (traditional or conventional) are scanty. On the other hand, we demonstrate, using Artemisia herba-alba as an example, that through a proper search and identification of medicinal plant(s) and their phytochemicals identification using secondary data (published reports) on the plant's ethnic uses, phytochemical constituents, and pharmacological activities against COVID-19 comorbidities and symptoms coupled with the use of primary data obtained from in silico (molecular docking and molecular dynamics) studies on the binding of the selected plant's phytochemicals (such as: rutin, 4,5-di-O-caffeoylquinic acid, and schaftoside) with various vital components of SARS-CoV-2, it may be possible to rapidly identify plants that are suitable for further research regarding therapeutic use against COVID-19 and its associated symptoms and comorbidities.


Subject(s)
Artemisia/chemistry , COVID-19 Drug Treatment , Plant Extracts/chemistry , Plant Extracts/pharmacology , COVID-19/epidemiology , Comorbidity , Coronavirus 3C Proteases/chemistry , Ethnobotany/methods , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/chemistry , Plants, Medicinal/chemistry
4.
Nutrients ; 14(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625635

ABSTRACT

Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19) with other comorbidities such as diabetes. Diabetes is the most common cause of diabetic nephropathy, which is attributed to hyperglycemia. COVID-19 produces severe complications in people with diabetes mellitus. This article explains how SARS-CoV-2 causes more significant kidney damage in diabetic patients. Importantly, COVID-19 and diabetes share inflammatory pathways of disease progression. SARS-CoV-2 binding with ACE-2 causes depletion of ACE-2 (angiotensin-converting enzyme 2) from blood vessels, and subsequently, angiotensin-II interacts with angiotensin receptor-1 from vascular membranes that produce NADPH (nicotinamide adenine dinucleotide hydrogen phosphate) oxidase, oxidative stress, and constriction of blood vessels. Since diabetes and COVID-19 can create oxidative stress, we hypothesize that COVID-19 with comorbidities such as diabetes can synergistically increase oxidative stress leading to end-stage renal failure and death. Antioxidants may therefore prevent renal damage-induced death by inhibiting oxidative damage and thus can help protect people from COVID-19 related comorbidities. A few clinical trials indicated how effective the antioxidant therapy is against improving COVID-19 symptoms, based on a limited number of patients who experienced COVID-19. In this review, we tried to understand how effective antioxidants (such as vitamin D and flavonoids) can act as food supplements or therapeutics against COVID-19 with diabetes as comorbidity based on recently available clinical, preclinical, or in silico studies.


Subject(s)
Antioxidants/therapeutic use , COVID-19/complications , Diabetic Nephropathies/complications , Diabetic Nephropathies/prevention & control , Oxidative Stress/drug effects , Humans , Patient Acuity , SARS-CoV-2
5.
Pharmaceutics ; 13(11)2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1512541

ABSTRACT

Recent years have witnessed the emergence of several viral diseases, including various zoonotic diseases such as the current pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Other viruses, which possess pandemic-causing potential include avian flu, Ebola, dengue, Zika, and Nipah virus, as well as the re-emergence of SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) coronaviruses. Notably, effective drugs or vaccines against these viruses are still to be discovered. All the newly approved vaccines against the SARS-CoV-2-induced disease COVID-19 possess real-time possibility of becoming obsolete because of the development of 'variants of concern'. Flavonoids are being increasingly recognized as prophylactic and therapeutic agents against emerging and old viral diseases. Around 10,000 natural flavonoid compounds have been identified, being phytochemicals, all plant-based. Flavonoids have been reported to have lesser side effects than conventional anti-viral agents and are effective against more viral diseases than currently used anti-virals. Despite their abundance in plants, which are a part of human diet, flavonoids have the problem of low bioavailability. Various attempts are in progress to increase the bioavailability of flavonoids, one of the promising fields being nanotechnology. This review is a narrative of some anti-viral dietary flavonoids, their bioavailability, and various means with an emphasis on the nanotechnology system(s) being experimented with to deliver anti-viral flavonoids, whose systems show potential in the efficient delivery of flavonoids, resulting in increased bioavailability.

6.
Infect Disord Drug Targets ; 22(1): e290721195143, 2022.
Article in English | MEDLINE | ID: covidwho-1352770

ABSTRACT

OBJECTIVE: To evaluate the efficacy of reported anti-malarial phytochemicals as lead compounds for possible drug development against COVID-19. METHODS: An in silico approach was used in this study to determine through molecular docking the binding affinities and site of binding of these phytochemicals to the 3C-like protease of COVID-19 which is considered as the main protease of the virus. RESULTS: A number of anti-malarial phytochemicals like apigenin-7-O-glucoside, decurvisine, luteolin- 7-O-glucoside, sargabolide J, and shizukaols A, B, F, and G showed predicted high binding energies with ΔG values of -8.0 kcal/mol or higher. Shizukaols F and B demonstrated the best binding energies of -9.5 and -9.8, respectively. The acridone alkaloid 5-hydroxynoracronycine also gave a predicted high binding energy of -7.9 kcal/mol. CONCLUSION: This is for the first time that decursivine and several shizukaols were reported as potential anti-viral agents. These compounds merit further studies to determine whether they can be effective drug candidates against COVID-19.


Subject(s)
Antimalarials , COVID-19 Drug Treatment , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus 3C Proteases , Glucosides , Humans , Molecular Docking Simulation , Peptide Hydrolases , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL